
CPSC 530: Information Theory and Security
Fall 2017

Final Report
Estimating Password Strength

Group 3..

Niroojen Thambimuthu
Mark De Castro
Minh Tran
Masih Sadat

10153928
10109634
30017773
10066329

BSc in Computer Science
BSc in Computer Science
BSc in Computer Science
BSc in Computer Science

Introduction
 We are living in a digital age. Almost all parts of our lives are connected digitally to
some online service: we communicate with people, we purchase goods and services, we find and
share entertainment—the list goes on—and we perform all these tasks online. As such, the need
to protect the sensitive information we store on these services from potential attackers has
become increasingly important. Text-based passwords have become the most prominent method
of authenticating ourselves into these systems and in protecting our information from potential
digital breaches, despite the ever-advancing capabilities and techniques that attackers may have.
 More often than not, there are individuals who either have no knowledge of what
constitutes a good or reliable password, or they may simply have no motivation to create a good
one, and are perhaps too ignorant to care if the information they are storing stays secure. It
then becomes a form of responsibility for these websites and services to guide and ensure that
their users are creating strong and effective passwords. These services predominantly use
password strength estimators (or password meters)1 to do so. These password meters are usually
the coloured-bars that we see whenever we type in our desired password when we create an
account on some online service, and they usually rate whether a user’s given password is
“strong” or “weak,” or some scale along these lines. Moreover, most of these password meters
usually involve policies or guidelines that either guide or restrict the user through a set of rules
or standards, as they create their password.
 However, according to Dan Wheeler’s findings in his article [1], these password meters
may not be as reliable or effective as we think. For example, he found that the password
“qwER43@!” (a seemingly convoluted and complex password) is “weak” according to PayPal’s
password meter, while eBay’s own meter judged it as “strong.” While we may not be able to
exactly pinpoint which website correctly judged the strength of this password, it is evident that,
for both these websites to rate the same password as polar opposites, there must be some
glaring conflicts in the way that they are measuring this specific password example’s strength.
Moreover, in the research of de Carnavalet and Mannan [2], they stated that “meters from
several high-profile web services (e.g., Google, Yahoo!, PayPal) are quite simplistic in nature and
bear no indication of any serious efforts from these service providers.”
 Thus, it would seem that there are inconsistencies and weaknesses in the policies and
implementation of these websites’ password meters. Consequently, these findings make the
password creation implementations (that these high-profile websites utilize) look like ineffective
tools for measuring actual password strength. This is an alarming precedent since this creates
the possibility of an individual being led into believing that a password they created is “strong,”
when in reality, this may not be the case. This is a very concerning security risk, especially when
we consider Mark Burnett’s findings [3] that, while “online attacks are difficult, there are enough
people with enough weak passwords that they will always yield results.” Thus, ineffective
password meters could mean potentially easier and/or a higher number of attacks from potential
attackers.

1 Please note that ‘password strength estimator,’ ‘password meters,’ ‘password policies’
 or ‘password guidelines’ are used interchangeably in this paper.

 1

Problem
 With this precedent in mind, our group’s evident first steps were to delve further into
this issue of weak and inconsistent password meters, policies or guidelines that have been
occurring among many popular websites and online services. We have found three research
papers spanning from 2011 to 2015 that shed light on how grave of a predicament this has been
throughout the years. The contents of these papers and their findings on this problem of
password meter weakness and inconsistency are briefly highlighted below:

•Furnell (2011). Furnell looked at 10 websites from Alexa’s ‘Global Top Sites’ list, including
Google, Facebook and Wikipedia, as based on their traffic ranking, and assessed their
password meters, policies or guidelines (e.g., if they provided guidance or imposed
restrictions, means of password recovery, etc.) and other pertinent characteristics that they
may possess. Upon assessment, he concludes that, since 2007, there has been no clear
improvement from these websites’ password practices, despite the increase in their number
of users, stating that, aside from a few, most of the sites offered “nothing beyond standard
password protection” and that they are “not implementing it as well as they could do [4].”

•de Carnavalet and Mannan (2014). The pair of de Carnavalet and Mannan in 2014
evaluated the password meters of 11 prominent web services, ranging from financial, email
and messaging services. They analyzed their password meters and extracted code to study
the algorithms they may use, and even plugged them into a custom dictionary-attack
algorithm. They then reported the prominent characteristics that these meters deployed.
Upon analysis, they found that the password meters they analyzed “are highly inconsistent,
fail to provide coherent feedback . . . and sometimes provide strength measurements that
are blatantly misleading.” As a final note, they comment on the implementation of most of
these password meters, stating that they “bear no indication of any serious efforts from
these service providers [2].”

•Wang and Wang (2015). The duo of Wang and Wang performed an empirical analysis of
password creation policies imposed on high-profile websites, including 20 from the United
States and 30 from China. They analyzed each of the policies through a systematic,
evidence-supported approach and they tested them through custom guessing attacks. They
concluded that these policies among leading websites: (1) are “highly diversified,” citing
that no two sites enforce the same password creation policy (i.e., among the 50 sites, there
were 50 distinct policies), and (2) are unable to serve their purpose of securing user
information, and are therefore “vulnerable to targeted online guessing attacks [5].”

Therefore, as we can see, there is incontrovertible evidence that there has been a history of
inconsistency and a slew of weaknesses among the password meters of popular websites through
the years. So, from these studies, we can highlight a major problem, in that the password
meters, policies or guidelines of popular, high-profile, high-traffic websites are highly
inconsistent, give incoherent feedback and/or are not well-implemented. This poses a great
security risk for the many users of these web services since: (1) this can lead to users creating
weak, unsecure passwords, or (2) it may give users the wrong perception that the passwords
they are creating are strong or secure enough, and, most importantly, (3) it becomes easier for
attackers to guess and crack these users’ passwords. It would therefore be pertinent to re-analyze
and scrutinize the efficacy of password meters deployed by a few selected popular websites, as
there has been noteworthy growth in the online world, with the massive growth of social media
and online businesses.

 2

Proposed Work
 As it is clear that there is a problem of inconsistent and weak password meters among
numerous popular websites, our group has worked in two phases to perform our work for our
project. They are detailed below:

 Phase One. Using the above three studies as a reference, we studied and
analyzed the prominent policies, characteristics and guidelines of the password meters
utilized by a selection of popular websites. We then tested these password meters and
policies by using common, unreliable passwords as input. From these, we compared results
among the websites and we tried to analyze and see if there are still inconsistencies among
these popular, high-profile websites. Then, we compared our findings to the aforementioned
research papers and noted if there are any inconsistencies and weakness that are still
currently occuring and should be highlighted, and thus use these as a reference to any
improvements that we can suggest to these websites in their implementation of their
password strength calculation metrics.
 Phase Two. To alleviate the problems of inconsistency and weaknesses among
password meters that we have found in our first phase, we then wanted to find a reliable
password strength estimator that can be used as a standard that these popular web services
can emulate or deploy themselves (i.e., even as a replacement to the current password
meters that they may be using); or, at the very least, we want encourage the use of this tool
as a (future) point of reference that other meters or estimators can strive to emulate and
measure against, or at least aim to have the same level of performance that it has. Thus, in
analyzing this tool, we wanted to:
•Fully understand and the tool and any of the algorithms it uses
•Use the tool ourselves, modify it and assess its ease of use
•Find a noteworthy and real-world list of leaked passwords that can be used to assess the

tool’s efficacy and efficiency
•Compare and test the tool against NIST standards and guidelines and analyze results

Therefore, the overall goal of this project is to propose possible ways of improving the existing
meters that these currently popular websites use. In doing so, we expect that password meters
will become actual effective tools for measuring a password’s strength. In turn, we expect that
this will help those who may be unaware (or ignorant) of the proper techniques in formulating
strong and sound passwords, which in the end, will aid in protecting their sensitive information.

Findings, Experiments and Results
Phase One
1.1. Choosing the popular, high-traffic websites
 To begin our work for this project, we first looked at five prominent and popular
websites whose password meters, policies or guidelines we will analyze. We will choose them
based on the latest (2017) Alexa rankings [6] as based on each website’s traffic (i.e., users’ daily
time on the site, daily visitor page views, other websites that link to it). Aside from this, we also
wanted to choose websites that vary in their specific use, so wanted to consider social media

 3

websites, business/financial websites, and email or messaging services. As such, with these in
mind, we have chosen to work with the following websites:

We have chosen the above five websites as they are among the most popular and dominant
websites that many web users are utilizing today. We chose a conservative number of websites
firstly due to time constraints, as we felt it may be infeasible to collect and analyze data for a
higher number of sites, especially with the other work we had planned for the remainder of our
project. We feel, however, that the websites we chose were diverse enough (i.e., we chose a range
of websites for different types of online services) and so, they are representative enough for the
purposes of this project. We believe that looking at these five prominent websites will satisfy our
motive of showing if there are still inconsistencies or weaknesses among their password meters,
policies or guidelines.

1.2. Comparison of password meters or policies
 Now, we take a closer look at the characteristics of the password meters and/or policies
and guidelines that these five high-profile websites use. We investigate how each of these
websites guide or restrict users as they create their passwords and list the attributes they have.
We do so since we want to see if there are any significant changes in these websites’ password
meters and policies in terms of guiding a user through password creation, as compared to the
findings found by the three research papers we have mentioned. We want to see if they have
either improved any of their guidelines or policies, or if they have remained stagnant from
previous years. We also want to note any peculiarities that they may possess, which can help us
in pinpointing any inconsistencies or weaknesses that they may have. We will observe the
following common characteristics or requirements:

•Strength meter or scale. Do they employ visual or textual meters or scales that help
users see how strong a password is? For example, do they use a bar that fills up as a
password gets stronger? Or, do they use words like ‘weak,’ ‘fair’ or ‘strong’?

•Length limits. Is there a minimum length for a user’s password? Is there a maximum?
•Character set requirements. Do they require or force users to use at least one of the

following: digits, uppercase letters or special symbols?
•Allows user information. Can users use their name, birthdate or some other piece of

personal information (or any combination of these) that they have used elsewhere to sign
up for the website as their password (e.g., if you use your name as your username, we want
to see if it can also be used as your password)?

•Feedback to user. Do they provide any form of feedback about the password that the
user is creating?

Website Alexa Ranking Description
Amazon 10 International online retailer
Facebook 3 Social media website
Google 1 Web portal (incl. social media, email, web search)

LinkedIn 30 Business networking website
Twitter 13 Social media / microblogging website

 4

The table that follows summarizes our findings on the above characteristics:

Analysis of results. Upon observations of the password meters, policies and guidelines as per
Table 1, we have found the following:

•Not all websites use some form of strength or scale to let the user visually see the rating of
their password.

•Most of them employ a limit of 6 characters. Similarly, most do not enforce a maximum
length. Coincidentally, both limits in minimum and maximum length that differed are from
Google. Perhaps, as Google encompasses a wider range of services (i.e., social media
(Google+), Youtube, email client (Gmail), search engine, browser information (Google
Chrome)), they felt the need to increase the minimum length of a password to increase its
security. This is good, considering that is has been found that increasing a password’s
length (instead of its complexity, such adding special characters) enhances its security, as
stated in Scarfone and Souppaya’s findings [7].

•Only LinkedIn asked users to include at least one special character in a user’s password.
Then, for Facebook and Twitter, from our testing, it seems special characters are required
in some way, but there were no blatant messages anywhere indicating to user that these are
needed for their password.

•Three out of the five websites allowed user information (that is also used while signing up
for the website) to be used as a user’s password. This is quite worrisome since an attacker
who can easily gain a user’s personal information (e.g., phishing) can easily use this to
guess a user’s password. It is even more concerning when, according to NIST findings [7]

Table 1. Comparison of characteristics/requirements of password meters, policies, guidelines

Amazon Facebook Google LinkedIn Twitter

Password
strength scale or

meter
None None

Colored bar
(changes color),
ranges from ‘too
short,’ ‘weak,’

‘fair’ to ‘strong’

None (but has
one when
changing

passwords after
sign up)

Color bar (green;
fills up as

password gets
strength)

Length
minimum 6 6 8 6 6

Length
maximum None None 100 None None

Charset
requirement None Not specified None

Must include
one special
character

Not specified

Allows user info? Yes Yes No Yes No

Feedback to
user/other notes

Only
specifies if

password is
too short

Tells user “Please
choose a more

secure password.
It should be longer
than 6 characters,
unique to you, and
difficult for others

to guess”

Uses phrases like
“common words

are easy to guess”
or “don’t use
something too

obvious like your
pet’s name”

Only specifies
if password is

too short

Only tells user
“please use a

stronger
password”

 5

[8], users tend to use personal information as their password for better memorization, and
so allowing user information should really not be allowed to be used as one’s password.

•Two out of the five websites did not give any form of appropriate feedback. Appropriate
and coherent feedback is important to users as this can lead to less user frustration as they
are properly guided in creating a secure password.

Therefore, from the above findings, we can clearly see that there are still glaring inconsistencies
in the way that password meters, policies and guidelines are implemented even from just five
popular websites. From the different characteristics, rules or requirements that we observed and
tested, none of the websites unanimously agreed upon a specific way to enforce any of them.
Moreover, from the studies of Furnell [4] and de Carnavalet and Mannan [2], who have
concluded that there does not exist a “greater level of consistency between the practices of
leading sites” and that “commonly-used meters are highly inconsistent,” despite significant
changes in that these password meters may have implemented, such as Twitter moving from
textual ratings (i.e., ‘strong,’ ‘good,’ ‘weak,’ etc.) to a visual bar that now just fills up if a
password is strong enough, or Amazon and Facebook no longer listing a set of requirements for a
user’s password, the findings remain the same in that these password meters and policies are
still highly inconsistent and there is no one standard method of enforcing or implementing them.

1.3. Testing password meters
 NIST guidelines [8] recommend that a blacklist of leaked or common passwords (of the
appropriate size) should be used by password meters and password creation policies in order to
prevent users from using such common and easy to guess passwords, which are very vulnerable
to (and are ineffective against) attacks. As a straightforward experiment, we want to test if our
five websites, during account creation, will succeed in preventing a user from using any of the
passwords found in the annual lists of the 25 worst passwords, as published by SplashData, Inc.,
a provider of security applications and services, [9] which releases a list of 25 passwords yearly
based on data they have examined from millions of passwords leaked in data breaches. For this,
we used the latest published list from 2016. Our assumption is that all five websites should
unanimously reject these passwords, as these passwords, by security standards, are the most
ineffective in protecting user information. The results are listed in the table that follows:

Table 2. Do popular websites accept the Top 25 Worst Passwords of 2016?

Rank Password Amazon Facebook Google LinkedIn Twitter

1 123456 ✓ ✕ ✕ ✕ ✕

2 password ✓ ✕ ✕ ✕ ✕

3 12345 ✕ ✕ ✕ ✕ ✕

4 12345678 ✓ ✕ ✓ ✕ ✕

5 football ✓ ✕ ✓ ✕ ✕

6 qwerty ✓ ✕ ✕ ✕ ✕

7 1234567890 ✓ ✕ ✓ ✕ ✓

8 1234567 ✓ ✕ ✕ ✕ ✕

9 princess ✓ ✕ ✓ ✕ ✕

10 1234 ✕ ✕ ✕ ✕ ✕

11 login ✕ ✕ ✕ ✕ ✕

 6

Analysis of results. Upon analyzing the above results, one glaring finding is that Amazon
(one of (if not the) biggest online retailers and businesses today, which stores multitudinous
amounts of personal and financial information of its users), on account creation, allows 20 out of
the 25 worst passwords of 2016 to be used as a user’s valid login password. Even if we put into
perspective the supposition that Amazon is greatly securing their servers from potential user
information breaches, it is still a bad precedent that one of the highest-profile websites is
allowing the most common of passwords to be accepted. It also crucial to note that the 5 out of
the 20 that Amazon’s password meter/policy rejected was merely based on the fact that they
were less than 6 characters. This is truly a worrisome case, and serves as a bad model of
password security. However, for the other four, aside from a few considerable slip ups, most of
the 25 passwords were rejected. Nonetheless, it should again be noted that, as per our
assumption, since these 25 passwords are the worst and most commonly used passwords and if
NIST standards are followed [8], the results should have instead been that all these websites
must reject any of these passwords.

1.4. Summary of Findings
 Therefore, even from our study on a moderate yet diverse number of popular websites
based on rankings by highest user traffic today, we have found that: (1) there are still striking
inconsistencies in their implementation and requirements for user password creation, in that
none of the websites we observed agreed upon any set of similar rules or requirements for
password creation; even comparing from previous studies, despite a few changes, we have
observed that this problem of inconsistency among password meters, policies and guidelines still
occurs today; and (2) there are still such popular websites today which have not implemented
any form of protection against the simplest of attacks, for example, by preventing the use of a
blacklist that prevents a user from utilizing some of the most common and unsecure passwords
that one can use today, and that most of such websites produce highly inconsistent outcomes
under the same password testing procedures, and therefore have weak implementations.
Therefore, there is a real and urgent necessity for a standard (or some model) that can or should
be used in the implementation of these websites’ password meters, policies or guidelines.

Rank Password Amazon Facebook Google LinkedIn Twitter

12 welcome ✓ ✕ ✕ ✕ ✕

13 solo ✕ ✕ ✕ ✕ ✕

14 abc123 ✓ ✕ ✕ ✕ ✕

15 admin ✕ ✕ ✕ ✕ ✕

16 121212 ✓ ✕ ✕ ✕ ✕

17 flower ✓ ✕ ✕ ✓ ✕

18 passw0rd ✓ ✕ ✓ ✕ ✓

19 dragon ✓ ✕ ✕ ✕ ✕

20 sunshine ✓ ✕ ✓ ✕ ✕

21 master ✓ ✕ ✕ ✕ ✕

22 hottie ✓ ✕ ✕ ✕ ✓

23 loveme ✓ ✕ ✕ ✕ ✓

24 zaq1zaq1 ✓ ✓ ✓ ✓ ✓

25 password1 ✓ ✕ ✓ ✕ ✕

 7

Phase Two
2.1. Choice of tool as a possible standard
 As per our analyses and testing from the first part of our project, we have observed that
there are still prevalent inconsistencies and weaknesses among the password meters, policies or
guidelines of highly popular websites. As such, since there is high chance that many users visit
and use these same websites simultaneously on a daily basis, a lack of standardization in terms
of their password creation policies is an unsettling problem since this can lead users into falsely
believing that the passwords they are creating are strong, and thus, become more susceptible
against online attacks. With this in mind, there should be some feasible, standard password
policy or meter (or set of algorithms) that should be used consistently among all websites today,
or at the very least, serve as a point of reference that other password strength meters and
estimators should strive to emulate (or even rise above) so that users get consistent and logical
feedback on their choices when creating passwords for the many existing web services today.
 For this project, we first considered KeePass Password Safe, an open-source password
manager with a password meter for the passwords stored within the application, which, given an
input password, matches common patterns and uses dictionaries to assign said input an entropy
and then finds a set of matches for that password. We put it as our first choice since, from
another study of de Carnavalet and Mannan on high-impact password meters [10], KeePass was
deemed as the “most stringent meter (without depending on policies)” upon the analysis of 14
different password meters. However, despite being brandished as “open-source,” we were unable
to find any repository that contained KeePass’ actual code that we could run, implement and
scrutinize ourselves in great detail. As such, we sought to find other alternatives, as we would
not be able to fully analyze such a password meter without access to real code. In the same
study of 14 password meters [10], however, we also found another open-source password meter,
the zxcvbn tool by Dan Wheeler, a similar password strength estimator, which decomposes an
input password into various patterns, and checks various dictionaries, and assigns and computes
various entropies for each, then computes a final total entropy for the given password. In de
Carnavalet and Mannan’s paper, they deemed that zxcvbn “yields more accurate strength
evaluations” [10] than the other meters they studied. Thus, as we were able to find actual source
code of zxcvbn, we have chosen to proceed with looking further and analyzing zxcvbn, and see if
it could be a possible candidate for this standard/model password meter that we are seeking.

2.2. Understanding zxcvbn and its advantages
 For over 30 years, most password requirements have been a ramification of 4 particular
common flawed guidelines: lower- and uppercase characters, digits and symbols, or LUDS for
short. However, despite being obsolete and futile in terms of its security implementations, LUDS
is still pervasively used today [11]. Thus, Dan Wheeler implemented zxcvbn, an alternative,
open-source password strength estimator, which is no more burdensome to implement than
LUDS. zxcvbn employs many leaked passwords and dictionaries to simulate guessing attacks to
compute the strength of passwords.
 How zxcvbn works. To estimate a password’s strength, zxcvbn goes through the
following three phases:

•Match. The first of the three phases is the matching phase, responsible for finding any
kind of patterns given a particular password. It incorporates other commonly used

 8

password patterns such as tokens, reversed, sequences, repeats, keyboard patterns, dates,
and brute-force matches during the matchmaking.

•Estimate. This second phase calculates the strength of entropy of each of the matched
patterns found from the first matching phase. During this phase, zxcvbn estimates the
attempts needed to guess other pattern types by asking: if an attacker knows the pattern,
or, how many attempts would they need to guess the instance?

•Search. The final phase is responsible for finding the lowest and simplest entropy of all
given matched patterns. By having both a string password and a set of overlapping
matches S, the last step is to search for the non-overlapping adjacent match sequence S that
covers the password and minimizes expression by using several algorithms.

Within this threefold process, zxcvbn breaks down a given password into several patterns (and
possible overlaps), and assigns each matched pattern an estimated entropy. Then, the total
entropy is calculated as the sum of the calculated entropies for each of the given input’s
matched patterns. However, its algorithm only keeps the lowest among all possible entropy
summations, so that the strength of a given password is underestimated. The highlight of zxcvbn
is its ability of pattern detection, which is performed by considering the following patterns (and
performs their accompanying entropy calculations as found in Wheeler’s paper [11]), which are
listed below:

•Repeat entropy: log base 2 calculations of any repeating patterns (e.g., h1h1h1, aaaaa),
•Year and date entropy: determines if a series of numbers corresponds to some date or

year (e.g., it can detect that 121217 is December 12, 2017),
•Spatial entropy: checks for combinations of shifts and turns on a keyboard (e.g., qwerty,

zxcvbn, asdfgh)
•Uppercase entropy: checks how many capital letters exist in a password (e.g., Football)
•L33t entropy: similar to uppercase entropy; checks if any l33t substitutions are made in a

password (e.g., p@ssw0rd, 3ntr0py)
•Dictionary entropy: parts of a password are checked against and is ranked based on

several dictionaries of common/leaked passwords, common English words and common
English names (e.g., one of its dictionaries is Mark Burnett’s list of leaked “Ten Million
Passwords” [12])

Then, the summed entropy is matched to a score by supposing that a guess would take 0.01
second, and that an attacker can distribute the load on 100 computers. That is, it assigns a
password a score based on computations of an attacker’s possible guess/crack time (as guided by
its entropy calculations). It gives a password a score from 0 to 4: ‘0’ if crack time < 102 seconds,
‘1’ if crack time is between 102 and 104 seconds, ‘2’ if crack time is between 104 and 106 seconds,
‘3’ if crack time is between 106 and 108 seconds, and ‘4’ if crack time is beyond 108 seconds (i.e.,
the harder to guess a password, the higher its score). Therefore, we can see how straightforward
yet complex the calculations are that zxcvbn goes through to measure a password’s strength.
 Moreover, aside from the actual complex and intricate process that zxcvbn goes through
to estimate password strength, the following advantages that it possesses also gives this tool
even more credibility and support towards being a password meter that many, if not all,
websites can deploy or emulate:

•Easy to adopt. zxcvbn is readily available through various Github repositories, available
in 16 different programming languages and their variations. Also, the file sizes of these

 9

implementations only range from 2 to 3MB. Furthermore, it can easily be adopted with
only four lines of code [13]. Thus, it is evident that development and modification of zxcvbn
is highly encouraged.

•Requires minimal storage. It requires about 1.5MB of compressed storage data to
estimate some of the best-known guessing attacks for a maximum of 105 guesses, about
245kB for 104 guesses, and 29kB for 103 guesses.

•Runs fast. Despite the intricacies and processes it goes through to estimate a password’s
strength, zxcvbn does so within milliseconds.

•Works as-is on web browsers, iOS and Android. It is easy enough to implement
among various platforms. For example, there are numerous examples of web-based
implementations and/or improvements of zxcvbn; see: [14] [15] [16].

•Constantly updated. zxcvbn is occasionally being improved upon and updated, with bug
fixes and updates which can be easily fetched with a few lines of code.

 However, de Carnavalet and Mannan state that zxcvbn’s main limitation is its “limited
size of the embedded dictionary,” [10] whereby non-dictionary words are considered random
strings instead. However, our group worked with zxcvbn’s code and was able to respond to this
limitation. As an example, Wheeler stated in his article [1] that zxcvbn does not catch words
without vowels, and that names and surnames are primarily from the US census. By modifying
zxcvbn’s code (using the JS implementation via ExecJS), our group was able to alleviate these
two dictionary shortcomings in quite an uncomplicated manner. In our modified version of its
code, it now catches passwords like ‘psswrd’ (which it previously gave a score of 2, despite being
a simple variant of one of the worst possible passwords, ‘password’; but now, our modified
version appropriately gives it a 1 (as other patterns are still considered), as seen in Figure 1
below), ’ftbll’ (previously a score of 2, now 1), or ‘prncss’ (previously scored 2, now 1).

Figure 1. zxcvbn code that does catch words without vowels (left);
our modified zxcvbn code that catches words without vowels (right)

 10

We also implemented capabilities of detecting uncommon (non-English names) like Sri Lankan
or Filipino names. Therefore, as we have shown, we believe that, with enough resources pooling
in to add more dictionaries to zxcvbn, this dictionary size limitation can easily be remedied.
Overall, our experience of using zxcvbn was a pleasant one, in that, despite being a bit arduous
to grasp at first, once we were familiarized with its inner workings, we were able to use it in a
simple and straightforward manner. Certainly, anyone with enough programming experience will
be able to install and run zxcvbn without any complications.
 Therefore, it is evident that zxcvbn is a prime candidate that can be used as a standard
among password meters. It provides more security, in that it estimates password strength
through a complex set of calculations; it is more flexible, by allowing many password styles to
flourish, given enough complexity; and it is more usable, as it is implemented to be easily
adopted to simple, rule-free interfaces that provide instant feedback to users creating a password
(i.e., it provides minimal complexity scores in place of obnoxious password requirements). With
this, zxcvbn can help guide users towards less guessable passwords. Furthermore, zxcvbn is a very
accessible tool, allowing for straightforward implementation and modification (with enough
experience.

2.3. Analysis of zxcvbn
 To properly test zxcvbn capabilities of estimating a password’s strength and to see if it is
indeed accurate and reliable, in this part of our project, given a set of passwords, we compared
their entropies calculated by zxcvbn with their entropies computed through NIST standards and
guidelines. Here, we compare zxcvbn to NIST entropy since it is very influential and widely
adapted by the industry standards, as noted by Shay, et al. [15] (i.e., most implementations of
LUDS-driven password policies follow this standard), while constantly beings improved upon.
Particularly, we use the following pseudocode, found in the 800-63-2 Electronic Authentication
Guideline of August 2013 from NIST guidelines [11]:

 1: function NIST_ENTROPY(p, dict)
 2: e ← 4 + 2 · p[2:8].len + 1.5 · p[9:20].len + p[21:].len
 3: e ← e + 6 if p contains upper and non-alpha
 4: e ← e + 6 if p.len < 20 and p ∉ dict
 5: return e

The above guideline states that for the first character within an input password, we add 4 bits.
Then, the set of characters between 2 to 8 is worth 2 bits. Then, the set of characters 9 to 20 is
worth 1.5 bits, while anything over 21 characters is worth a single bit. The overall entropy is the
sum of all 4-character bit types. Also, if the input were to have uppercase and non-alphabetic
characters, then add 6 more bits, and if the input length is under 20 and passes a dictionary
test, then to add 6 additional bits. As we can see, a negative aspect of this NIST entropy is that
the input length is the dominant factor to determine the strength of the password. zxcvbn was
designed to counter the negative aspects of this guideline.
 To perform our testing, we searched for a list of leaked, real-world passwords, which we
felt would be representative of actual users who are trying to formulate a password under
normal settings. Moreover, such a number would be manageable enough for our limited
timeframe, and so we would be able to fully analyze how these real passwords were formulated.
For our purposes, we have found a list of 725 passwords of real accounts from recent password
leaks of actual hackers who have infiltrated Twitter and Dropbox’s databases [17] [18]. While we
would have liked to gain access to a much larger list, doing so required performing illicit

 11

activities (e.g., hackers asking for bitcoins to gain access to full list of the above hacked accounts
and passwords). We will use these passwords to calculate the above proposed entropies.

2.4. Results
 We have computed the entropies from our list of leaked passwords from Twitter and
Dropbox, using zxcvbn and the aforementioned NIST computation. We then plotted these two
sets of entropies in a line graph, as found in the figure below:

Figure 2. Graph comparing zxcvbn and NIST entropies of
725 leaked passwords (each password numbered from 1 to 725)

With the 725 leaked passwords from Twitter and Dropbox, we have obtained two sample
distributions via zxcvbn and NIST entropy calculations. In analyzing this graph, we found that
the set of NIST entropies (the grey line) forms an almost flat, consistent line, averaging to about
28.76 bits, and standard deviation of 3.68. For the entropies calculated via zxcvbn (the blue line)
forms a fluctuating line graph, with significant peaks and drops in each of the password
entropies, with a mean of 21.68 bits, and standard deviation of 8.9.
 Here, we observe that NIST entropy calculations for this set of leaked passwords hovers
around 30 bits. It does so since: (1) the length of a password is the dominant factor used in
calculating NIST entropy, and (2) both Twitter and Dropbox employ a minumum length of 6
characters for their users’ passwords; therefore, with an average user selecting a password with 6
characters, with each character having 26 choices, the entropy would be log2(266) = 28.2 bits.
On the other hand, zxcvbn’s calculated entropies vary significantly (as seen in the numerous
fluctuations along its line graph above) since these calculations are based off of numerous
pattern detections, instead of their length, so this shows how there are many factors that zxcvbn
considers when calculating a password’s entropy. Then, as for the standard deviation of each of
the distributions, we observe that the entropies computed through zxcvbn has a standard
deviation (8.9) that is two times higher than that of NIST’s (3.68), which means that these two
calculations/tools are totally different.

0
10
20
30
40
50
60
70

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701

Entrop
y

Password (by assigned number)

Comparison of zxcvbn and NIST entropies zxcvbnNIST
Comparison of zxcvbn and NIST entropies

 12

 Now, in order to decide which calculation is more adequate in measuring a password’s
strength (i.e., if zxcvbn method of calculating password entropy is indeed accurate), we now
observe and look in detail at these list of passwords. Upon analysis, we have found that we were
able to divide this list of 725 passwords into two groups, based on their entropy computations:
(1) we have one group where NIST entropies are greater than those computed via zxcvbn (this
comprises 78% of the leaked passwords); and (2) the other group has zxcvbn entropy calculations
greater than those calculated via NIST (this comprises 22% of the leaked passwords). For
brevity’s sake, a subset of these two groups of passwords is found in the tables below:

Table 3. Subset of passwords from zxcvbn and NIST
entropy calculations, divided into two distinct groups

To analyze our whole list of leaked passwords and decide if zxcvbn can be a reliable tool of
estimation, we first consider the definition of a “good” password, as defined by Burnett’s studies
[3], which states that a password is “good” if an attacker takes a long time to guess it. Now,
with this definition in mind and upon analysis of our results above, we have observed the
following:

NIST entropy > zxcvbn entropy NIST entropy < zxcvbn entropy

Password NIST zxcvbn Password NIST zxcvbn

Annabelle01 34 18.541 F1m2a3@a 31 36.245

johnson1 27 3 paralda45 30 30.203

Elizabeth 29 3.322 g00dbyte$ 31 32.446

1michael 27 4 12imre12 28 28.11

north69 26 20.919 GOD1NMH% 29 32.255

William1 28 5.322 safejolu 26 26.424

bigtime 24 11.075 landyre4$ 30 31.97

RICHARD1 27 5.807 Remax06* 31 39.001

nicholas 26 6 Selam2u! 30 32.685

joseph11 28 7.17 me900lalo 30 30.649

jimmyjr01 30 24.11 Go*BPO21 32 41.682

2299 18 13.288 chakrum1 27 27.094

nicholas1 29 8 F4br1zz10 31 31.264

graykitty 28 14.673 Rb4001Jk13! 37 50.137

Charlie1 28 8.248 galoot00 28 28.183

hello123 28 8.34 jaden#23 28 28.233

happynewyear 32 20.275 zoieeliz 26 26.721

kristie10 30 16.071 Edkjr410@ 33 35.996

michael2010 33 8.895 9104atmm 28 28.041

1Princess 30 9.17 shwak14me 30 30.839

Bigdaddy1 30 10.322 gattes111 30 31.469

Gordon123 31 10.662 NRsi6774 30 32.15

bigdaddy 26 7.322 bonst@34 29 30.73

melissa1973 33 11.802 kl11j05y 28 33.634

happylife1 30 17.201 rn2417bayan 33 40.771

 13

1. In the first group (NIST > zxcvbn), most of the passwords, as evidenced in the table
above, are quite common and (on intuition) can be quite easily guessed. These passwords
in this group are usually just names (e.g., ‘nicholas,’ ‘johnson1’), or names with numbers
or capital letters usually in the first character (e.g., ‘melissa1973,’ ‘Charlie1’) or
combinations of simple, easy-to-guess words or phrases (e.g., ‘happylife1,’
‘happynewyear’). However, this is the group where NIST entropies gave such passwords
higher entropies, as compared to those from zxcvbn. This occurred since entropy
calculations via the NIST method rely mostly on a password’s length. Therefore, for this
group, we want to prefer the calculations that were made via zxcvbn’s method since we
do not want to overestimate a password’s strength (which, in this case, the NIST method
did). Moreover, as zxcvbn gave this set of passwords much lower entropies, we know that
they are accurately being deemed as bad passwords, which, in reality, they are.

2. As for the second group (zxcvbn > NIST), we observed that most of the passwords in
this set are quite complex, in that they mostly contain combinations of patterns, digits,
uppercase letters and special symbols, as seen in the table above. In this case, we can
observe that the differences in the calculated entropies using the two methods are very
small (e.g., more often, differences are by only 1 to 2 bits). Therefore, both methods
show that these passwords are good passwords. As such, we again prefer zxcvbn, since we
want to likewise value passwords with the correct calculated entropy values.

Therefore, it is clear that, based on these tests and comparisons, zxcvbn’s entropy calculations
are indeed more reliable, and as such, it can be accounted for producing accurate estimations of
a password’s strength. This is highly encouraging, since in Wheeler’s own comparisons [11] of
zxcvbn against other tools, which included NIST standards, he likewise found similar results of
zxcvbn producing accurate results for password entropy calculations. Thus, it is evident that ,
with based on our analyses, zxcvbn is indeed a good tool that can serve as a standard (or a
model) for the implementation of password meters, policies or guidelines used in many popular
websites today.

Conclusion
 In this project, we have conducted an analysis on the password meters, policies or
guidelines used by popular, high-traffic and high-profile websites today. In our studies of such
password strength estimators, even when compared against previous studies, we have found that
there still exists a problem of inconsistency and weaknesses that is prevalent among them. As
users visit these popular websites on a daily basis, it is then the burden of these websites to bear
in guiding users who need to be educated of what constitues good and strong passwords, which
can resist attacks. As such, we sought to remedy these inconsistencies and weaknesses by
proposing a tool which can be used as a standard that implementations of password meters can
emulate and deploy, or at least match performace that it has when it comes to estimating
password strength accurately. With our obersvations and analyses, we have found that zxcvbn,
an alternative, open-source password strength estimator, can truly and accurately estimate a
password’s strength by predicting an attacker’s ability to guess such passwords, through the
complex methods it performs, which highlight the importance of matching patterns in a given
password. We therefore recommend the use of zxcvbn as a starting point towards this goal of
having a standard and consistent manner of accurately assessing and estimating a password’s
strength, and thus, aid the users of these popular websites in creating better, more secure
passwords, in this day and age where attacks on personal information are prevalent. As for

 14

future work, we expect to see more modifications for the further improvement of zxcvbn as a
reliable password strength estimator. This can be done, for example, by relieving its limitations
with its dictionary. As we have shown, doing so is no complicated feat, and can be done with
enough programming experience. Indeed, we expect zxcvbn to stand as a model of a good and
reliable implementation of an accurate password strength estimator.

Notes
 In comparison with our project proposal, it is good to note that there have been quite
significant changes in our methodology in our search for a good password strength estimator.
Based on the feedback we received, we have now included studies, tests and experiments to
accurately measure and prove any of the results we have gathered in the two phases of our
project. In our first phase, we performed comparisons of several password meters and performed
tests on their ability to supress very common and weak passwords. In our second phase, we now
included tests to accurately rate zxcvbn’s methods of calculating password entropy. However, our
goals remained the same, in that, for this project, we wanted to propose possible ways of
improving the existing meters that these currently popular websites use. We believe we have
achieved this goal through the observations, tests and analyses we have performed in this
project, as our goal was met as we were able to accurately gauge zxcvbn’s capabilities, and that
we are putting it forth as our preferred model or standard for both future and current
implementations of passwords meters used everywhere, and that in doing so, users of such
websites are guided in creating more secure passwords.

 15

Papers/References
[1] D. Wheeler, “zxcvbn: Realistic Password Strength Estimation,” April, 2012. [Online]. Available:

https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-
estimation/. [Accessed Oct. 1, 2017].

[2] X. de Carné de Carnavalet and M. Mannan, “From Very Weak to Very Strong: Analyzing
Password-Strength Meters,” presented at Network and Distributed System Security
Symposium, San Diego, California, 2014.

[3] M. Burnett, Perfect Passwords: Selection, Protection, Authentication. Rockland, MA: Syngress
Publishing, Inc., 2006.

[4] S. Furnell, “Assessing password guidance and enforcement on leading websites,” Computer
Fraud & Security, 2011.

[5] D. Wang and P. Wang, “The Emperor’s New Password Creation Policies,” presented at 20th
European Symposium on Research in Computer Security, Vienna, Austria, 2015.

[6] Alexa.com. Alexa Top 500 Global Sites. [Online]. Available: https://www.alexa.com/
topsites. [Accessed October 27, 2017].

[7] K. Scarfone and M. Souppaya, “Guide to enterprise password management,” NIST SP800-118,
2013.

[8] W. Burr, D. Dodson, R. Perlner, W. Polk, S. Gupta and E. Nabbus, “Electronic authentication
guideline,” NIST SP800-63, 2006.

[9] M. Slain, “Announcing our Worst Passwords of 2016,” teamsid.com. [Online]. Available:
https://www.teamsid.com/worst-passwords-2016/. [Accessed Nov. 3, 2017].

[10] X. de Carné de Carnavalet and M. Mannan, “A largescale evaluation of high-impact password
strength meters,” ACM Transactions on Information and System Security, 2015.

[11] D. Wheeler, “zxcvbn: Low-Budget Password Strength Estimation,” presented at USENIX
Security Symposium, Austin, Texas, 2016.

[12] M. Burnett, “Today, I Am Releasing Ten Million Passwords,” February, 2015. [Online].
Available: https://xato.net/today-i-am-releasing-ten-million-passwords-
b6278bbe7495. [Accessed Oct. 1, 2017].

[12] Github.com. Low-Budget Password Strength Estimation. [Online]. Available: https://
github.com/dropbox/zxcvbn. [Accessed October 29, 2017].

[13] https://www.bennish.net/password-strength-checker/

[14] https://apps.cygnius.net/passtest/

[15] http://martinw.net/zxcvbn-bootstrap-strength-meter/

[16] R. Shay, S. Komanduri, P. Kelley, P. Leon, M. Mazurek, L. Bauer, N. Christin and L. Cranor,
“Encountering stronger password requirements: User attitudes and behaviors,” presented at
Symposium on Usable Privacy and Security, New York, New York, 2010.

[17] https://pastebin.com/n9phcmx4

[18] https://pastebin.com/teija5qQ

