City of Calgary (Corporate) Energy Consumption and the Impacts of COVID -19

LAND I BERTREN

Calgary

Titilayo Akapo Joseph Akrong Logan Bickerstaffe Niroojen Thambimuthu Reed Woofter

City of Calgary Corporate Energy Consumption

Business Case:

- With the recent emergence of the COVID-19 pandemic, daily routines have been majorly disrupted with the Federally and Provincially enforced lockdowns.
- What impact did the COVID lockdown have on City of Calgary facilities consumption
 - Are there areas where C of C Corporate energy consumption have experienced increases/decreases?
- Overall usage rates of Electrical, Natural Gas, Solar power
 - How are they changing? What trends are emerging? Forecasting future energy requirements for each form
 - Solar power usage has seen an exponential increase requires a deeper look.
- How is green energy supplementing the energy demands of the city's facilities. Can more be done in the new emerging form of energy?

Identify and Design Relationship

Business Modeling Tools

Data Dictionary

Data Map

Identify and Design Relationships

 The datasets are related to one another by date time via the *DateFinal* entity

Data Dictionary

- District Energy the name used for energy distributed to clusters of buildings for heating purposes
- Facility Management the energy used to heat and power city facilities
- Solar Power the conversion of energy from sunlight into electricity, commonly using photovoltaics
- *Photovoltaics* the conversion of light into electricity using semiconducting materials (Solar Panels)
- Semiconductor a material that has an electrical conductivity falling between a conductor, and an insulator
- Solar Thermal Energy Solar power which is used to heat water or air
- Natural Gas a non-renewable and naturally occurring hydrocarbon gas used primarily for heating, cooking, and generating electricity
- *Kilowatt Hour(kWh)* A measure of electrical energy commonly used as the billing unit for electrical utilities, equal to 3600 kilojoules

Identify issues that can hinder utility delivery to the general public through city facilities

Data Map

- The governing body of Alberta has the largest say in the Energy policies.
- The limits on our analysis highlight the value of comprehensive and timely electricity data, which are currently not available for most of Canada.
- Is the energy source (electrical/natural gas/solar) the most cost effective for the City of Calgary?

Six Stage Problem-Solving Process

Explore the Mess

In early Part of 2020, the first COVID-19 case was recorded in Alberta

What was the cause and effect of the enforced shutdowns on Energy consumption

Looking at three small, clean data sets:

Energy consumption from the City of Calgary Corporate Alberta Gas pricing dataset City of Calgary Solar production and consumption

- https://data.calgary.ca/Environment/Corporate=Energy=Consumption/crbp=innf
- https://economicdashboard.alberta.ca/NaturalGasPrice
- https://data.calgary.ca/Environment/Solar=Energy=Production/ytdn=2qsp

Searching for Information

Historically Natural Gas and Electricity have been the primary energy sources for the City of Calgary

Have other sources of energy been explored for cost reductions?

3/4 of all natural gas and electricity consumed by City of Calgary facilities are; Water Services, Calgary Transit, Facility Management, Calgary Recreation and Roads.

In Calgary, the Southland Leisure Centre is the only facility currently using Solar Thermal as one of its energy sources.

Identify a Problem

Two energy units of measure (kWh & GJ) – convert to one:

Heating is measured in GJ

Electricity is measured in kWh

How can the different energy sources be smartly/economically utilized?

How can the use of renewable energy be maximized?

Is Solar power an achievable source of power? Production vs. Consumption?

Searching for Solutio ns

Natural Gas and Electrical are stable, proven sources of energy but there is desire to phase out hydrocarbons. How can this be achieved?

A gradual staggered implementation of Solar energy systems in all government facilities throughout the city is a great starting point.

Provide technical and financial incentives to organizations that are interested in adopting solar energy as energy generators.

<u> https://www.nrcan.gc.ca/our-natural-resources/energy-sourcesdistribution/renewable-energy/solar-thermal/7301</u>

Evaluating Solutions

Geographically, Calgary is in a Northern latitude therefore seasonal daylight hours need to be considered

Finance and resources to embark on a new project

Accessing affordable financing to invest in energy efficiency is a major barrier for property owners

Implementin g a Solution

The green energy push is in motion as projects in various stages are moving ahead in Calgary

Energy demands are expected to grow in the years to come.

Public is supportive of more balanced energy methods going forward

Not enough support for companies that champion renewable energy production

City of Calgary Corporate Energy Consumption

Visuals in Power BI

Data Modeling – Predictive Models

- The datasets that have been collected for the case study lend themselves to be modeled with Predictive Analysis Tools
- Forecasting will be done to determine future consumption numbers for the City of Calgary Corporate
- Historical data from 2014 will help in defining:
 - year-over-year models for consumption, through to year end 2022
 - The effect of COVID-19, projecting into the future for three months

Data Preparation

Python Stats

Number of Rows: 134,793 Columns: 10 Missing Values(Address): 30 **Final Number of Rows:** 134,763

<class 'pandas.core.frame.DataFrame'> RangeIndex Data colum # Colum Busir Faci Site 2 Faci 4 Enera

Year

Montl

Date

Tota]

Unit

dtypes: f

memory us

1.0

0.8

0.6

04 0.2

6

8

9

: 134793 entri	es, 0 to 134792	
ns (total 10 c	olumns):	
n	Non-Null Count	Dtype
ess Unit Desc	134793 non-null	object
ityName	134793 non-null	object
ID	134793 non-null	object
ityAddress	134763 non-null	object
y Description	134793 non-null	object
	134793 non-null	int64
	134793 non-null	object
inal	134793 non-null	object
Consumption	134793 non-null	float64
	134793 non-null	object
oat64(1), int64	4(1), object(8)	
ge: 10.3+ MB		

<class 'pandas.core.frame.DataFrame'> Int64Index: 134763 entries, 0 to 134792 Data columns (total 10 columns): # Column Non-Null Count Dtype Business Unit Desc 134763 non-null object 0 1 FacilityName 134763 non-null object Site ID 134763 non-null object FacilityAddress 134763 non-null object 4 Energy Description 134763 non-null object Year 134763 non-null int64 6 Month 134763 non-null object 7 DateFinal 134763 non-null object 8 TotalConsumption 134763 non-null float64 134763 non-null object 9 Unit dtypes: float64(1), int64(1), object(8)

memory usage: 11.3+ MB

Data Info after (dropna)

	Year	TotalConsumption
count	134793.000000	1.347930e+05
mean	2016.697277	4.835626e+04
std	1.851228	2.994861e+05
min	2014.000000	-2.806000e+03
25%	2015.000000	2.700000e+01
50%	2017.000000	1.607000e+03
75%	2018.000000	1.442000e+04
max	2020.000000	1.112766e+07

Missing values using dataprofiling

Data Describe

Raw Data Info

134163 134193 134193

34793

134793

107834

80875 53917

26958

N34193

Data Prep Using Python

Data Prep Using SPSS Modeler

Field	Sample Graph	Measurement	Min	Max	Mean	Std. Dev	Skewness	Unique	Valid
A BusinessUnitDe		& Nominal	-	-	-	-	-	19	134793
A EnergyDescription		Nominal	-	-	-	-	-	5	134793
🕸 Year		🔊 Continuous	2014.000	2020.000	2016.697	1.851	0.092	-	134793
A Month		Nominal	-	-	-	-		12	134793
TotalConsumption		🔊 Continuous	-2806.000	11127658.000	48356.262	299486.080	18.781	-	134793
A Unit		🕈 Flag		-	-			1	134793

1 Indicates a multimode result 2 Indicates a sampled result

Data Audit

Value /	Proportion	%	Count
District Energy		0.22	297
Electricity		74.83	100862
Natural Gas		24.23	32664
Solar Power		0.67	902
Solar Thermal		0.05	68

Energy Description Distribution Plot

Value /	Proportion	%	Count
Calgary Comm Standards		0.03	43
Calgary Fire Department		0.16	213
Calgary Growth Strategies		0.16	210
Calgary Housing		0.63	850
Calgary Parking Auth		2.0	2690
Calgary Parks		19.95	26886
Calgary Recreation		6.69	9015
Calgary Transit		17.05	22982
CPS - Bureaus		2.85	3847
Facility Management		17.69	23850
Green Line Delivery		0.39	527
Information Technology		0.3	408
Real Estate and Dev Serv		2.44	3293
Roads		3.47	4674
Transportation Infrastructure		0.13	178
Transportation Planning		0.06	77
Waste - Recycling Services		3.36	4526
Water Resources		2.79	3765
Water Services		19.85	26759

Business Unit Distribution Plot

Forecasting Software

Year	2014	2015	2016	2017		2018	2019	
Electricity Consumption (kWh)	483,495,512	471,416,347	457,795,807	454,00)2,847	466,061,597	455,794	,942
Forecast E Qptions Forecast S Confic	nd 2,022 + tart 2,019 + lence Interval 95%	* *	Iimelin	e Range	'Electricity	'!\$L\$1:\$R\$1		
	y : <u>A</u> utomatically		<u>V</u> alues	Range	'Electricity	'!\$L\$2:\$R\$2		↑
◯ Set <u>M</u> a	anually 0		<u>F</u> ill Mis	sing Points	Using	Interpolation		\sim
Includ	e forecast statistics		Aggreg	2017 2018 2019 07 454,002,847 466,061,597 455,794,942 neline Range 'Electricity '!\$L\$1:\$R\$1				
						Create	Cancel	

Excel Data Forecast

SPSS Modeler

Total Energy Consumption

Electricity Forecasts

Electricity Consumption Forecast

Natural Gas Forecasts

Natural Gas Consumption Forecast

----- Lower Confidence Bound(Consumption) ------ Upper Confidence Bound(Consumption)

Solar Forecasts

Solar Consumption Forecast

Month

Going Green

- Alberta is ranked as the 2nd best province to install a solar energy system
- In 2012, City of Calgary committed to reduce greenhouse gas emissions by 20% (from 2005 levels) by 2020, and 80% by 2050
- City of Calgary has invested in collecting and utilizing solar power primarily at Water treatment facilities
- Some other ways Calgary is becoming greener include combined heat and power from biogas, converting landfill gas to power, and wind generated electricity.

Embracing Solar Power

- Calgary receives and average of 2,396 hours of sunlight each year
- The city has solar projects dating back to 2008
- Sites range from water treatment plants to fire halls, leisure centers to landfills.
- Their use will improve our ecological footprint, increase the supply of renewable energy, and reduce utility costs, given a long enough time frame

How it works

- Photovoltaic solar panels are mounted to a south or west facing rooftop to be exposed to sunlight
- An inverter will convert direct current electricity from the panels into other forms of useable electricity
- Converted electricity is distributed throughout the building
- A monitoring system will detect the amount of energy being produced by the system
- Any surplus energy not in use in the building will pass through the City electrical grid and provide power to others

Calgary

Harnessing the Power

- The City currently utilizes 21 different solar sites of varying capacities
- The consumption data set included all 22 sites, however the production data set included only 8 sites
- These 8 sites rely on the electricity generated by these projects to offset electrical costs, and supply surplus power directly to the
 electrical grid
- The efficiency of these sites have created interest in the Albertan Solar market, and have encouraged foreign investment in our City

Southland Leisure Centre

- Cities first large-scale Photovoltaic project, completed in 2015
- These panels provide between 161,000 184,000 kWh
- The system offsets approximately \$24,000 in electricity costs for the facility annually
- The system will produce electrical energy for at least 25 years
- Total Lifetime energy production: 592.84 MWh

Bearspaw Water Treatment Plant

- Completed in late 2017 with a total cost of ~\$1.35M
- This system is comprised of 1740 panels, capable of offsetting approximately 900,000 kWh annually
- The power produced here is used to offset utility power requirements for plant loads, with a capacity of 499.5 kWh
- Responsible for reductions in Greenhouse Gas Emissions of 500 tonnes/year of CO2
- Total lifetime energy production: 1.81 GWh

City of Calgary Solar Energy Data Collection

•Solar Potential Interactive Map:

•<u>Calgary Solar Map</u>

 SolarEdge Data Hub (Bearspaw):
 Bearspaw Water Treatment Plant Data hub

Calgary_Energy_Consumpt...

ame	DateFinal	Sum_Montly_kWh	
outhland Leisure Centre	2015-09-01	15475.746	
outhland Leisure Centre	2015-10-01	15068.149	
outhland Leisure Centre	2015-11-01	4302.924	
outhland Leisure Centre	2015-12-01	1722.964	
outhland Leisure Centre	2016-01-01	3081.863	
outhland Leisure Centre	2016-02-01	9544.109	
outhland Leisure Centre	2016-03-01	18105.476	
outhland Leisure Centre	2016-04-01	21241.109	
outhland Leisure Centre	2016-05-01	22154.348	
outhland Leisure Centre	2016-06-01	25612.561	
outhland Leisure Centre	2016-07-01	22867.97	
outhland Leisure Centre	2016-08-01	21054.531	
outhland Leisure Centre	2016-09-01	7248.866	
illhurst Sunnyside Community Association	2016-10-01	1698.431	
outhland Leisure Centre	2016-10-01	6908.17	
outhland Leisure Centre	2016-11-01	4727.843	
illhurst Sunnyside Community Association	2016-11-01	809.24	
algary Fire Hall Headquarters	2016-11-01	0.427	
outhland Leisure Centre	2016-12-01	703.615	
illhurst Sunnyside Community Association	2016-12-01	197.868	
algary Fire Hall Headquarters	2016-12-01	0.005	
ichmond - Knob Hill Community Hall	2016-12-01	76.437	
ity of Calgary North Corporate Warehouse	2016-12-01	228.847	
ity of Calgary North Corporate Warehouse	2017-01-01	40.556	

Calgary_Solar_Production

Natural_Gas_Prices

Integrating Other Datasets

- Our main dataset is limited to energy consumption
- Need to answer new questions related to other elements than consumption
- How we incorporate other supportive dataset
- Alberta Natural Gas Prices and Calgary Solar Energy Production

Tableau Visualizations

- Calgary Natural Gas Consumption and Prices
- Calgary Solar Consumption and Production

City of Calgary - Corporate Energy Cons

Natural Gas Price Forecast

Conclusion

Solar Energy and Natural Gas consumption statistically increasing. Consider supplemental energy sources.

Consumption Predictions are limited due to small Covid dataset. However all energy sources, apart from solar power, are predicted to decrease due to COVID-19.?

Outside of COVID-19, Electricity consumption is expected to decrease, Natural gas and Solar Energy total consumption are increasing

Looked at Natural Gas Prices, Solar Energy Production, Energy offset and optimization methods: Solar Panels, LED bulbs

Used multiple tools and techniques for case study analysis

Recommendations: Analyse larger COVID-19 dataset, Different forecasting(exponential), Greener energy production for future increased demands,

1.11

Questions?